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ABSTRACT 

Urban crime analysis demands sophisticated clustering methods to reveal both spatial and 

temporal patterns with precision. This paper introduces the 3PGrid Cluster Model, an innovative 

approach that employs a three-tiered grid partitioning—Protected, Private, and Public zones—

specifically structured for effective spatial-temporal crime clustering. By integrating timestamp 

data with agglomerative hierarchical clustering, the model dynamically delineates clusters within 

prime-numbered grid boundaries, optimising spatial partitioning and enhancing the accuracy of 

crime hot spot detection. Comparative performance evaluations against existing clustering 

techniques show the 3PGrid Cluster Model achieving high Silhouette Coefficient (0.87), Dunn 

Index (2.35), and Adjusted Rand Index (0.79), while yielding superior clustering accuracy (93%). 

These results underscore the model’s robust capacity for uncovering nuanced crime density 

variations, making it a powerful tool for urban crime prevention strategies and resource 

allocation. Our findings illustrate the model’s potential to inform data-driven policymaking, with 

enhanced interpretability and adaptability across diverse urban environments. 

Keywords: 

3PGrid Cluster Model, spatial-temporal clustering, crime analysis, timestamp integration, 

hierarchical clustering, prime-numbered grids, crime density analysis, public safety analytics 

 

1.Introduction 
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The increasing prevalence of criminal activities in urban and rural areas has become a 

significant concern for law enforcement agencies, policymakers, and citizens alike. The cause of 

this escalating issue is multifaceted, ranging from socio-economic disparities and inadequate 

policing resources to population growth and urbanisation. The effect of unchecked crime 

manifests in societal instability, reduced quality of life, and economic downturns. Traditional 

methods of crime monitoring and prediction often fail to adapt to the complex, ever-evolving 

nature of criminal behaviour, leading to delayed responses and ineffective preventive measures. 

As a result, there is an urgent need for advanced crime clustering and prediction methodologies 

that can address these dynamic patterns. 

Several existing algorithms offer minimal solutions to this problem by applying various 

approaches to crime data analysis. The K-Means Clustering algorithm, while useful in identifying 

crime hotspots, struggles with capturing the temporal dimension and spatial granularity needed 

for real-time response. DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 

handles noise and outliers effectively but often misses the nuance of gradual crime density 

changes in different grid scales. Agglomerative Hierarchical Clustering provides a hierarchical 

view of crime clusters but lacks the flexibility to handle dynamic crime patterns efficiently. 

Spectral Clustering, while adept at handling complex non-linear relationships in crime data, is 

computationally expensive for large datasets. Lastly, Gaussian Mixture Models (GMM) can 

model the distribution of crimes but require prior knowledge of the number of clusters, which is 

often unknown in crime datasets. 

Our proposed methodology, the 3PGridCluster model, offers a novel approach that 

addresses the limitations of these existing algorithms. The model utilises a grid-based clustering 

technique, progressively refining spatial clusters using prime-numbered grid partitions to ensure 

both granularity and accuracy. Unlike traditional clustering methods that apply uniform grid sizes 

or static thresholds, 3PGridCluster adapts the grid dimensions dynamically, forming Public 

Clusters (5 km * 5 km), Private Clusters (3 km * 3 km), and Protected Clusters (1 km * 1 km), 

each of which captures different levels of crime density. Through recursive grid refinement and 

a LASSO-based feature selection technique, our model not only accounts for spatial proximity 

but also integrates crime type similarity to form more meaningful clusters. Outliers are 

effectively identified, and the model's recursive nature enables a multi-scale perspective that 

enhances both localised and broader-scale crime analysis. 

This work diverges from existing approaches by emphasising the dynamic partitioning of 

spatial grids based on prime numbers, which leads to more adaptive and precise clustering at 

different levels. Additionally, while many clustering algorithms focus solely on either spatial or 

temporal dimensions, the 3PGridCluster model integrates both aspects, providing a multivariate 

approach that better captures the complexity of criminal activity. The integration of crime type 

similarity further enhances its ability to detect nuanced patterns within the dataset.The following 

sections of this research will delve into the specifics of the 3PGridCluster model, outlining its 

mathematical formulation, implementation, and performance evaluation. By comparing it with 

the aforementioned algorithms, we demonstrate how this approach offers a more robust and 

flexible solution for crime pattern detection, ultimately improving crime prevention strategies 

through data-driven insights. 

 

1.1 Research objectives:  
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The research objectives are focused on enhancing public safety and crime prevention by 

addressing several key areas. First, it aims to protect individuals from potential crime offenders, 

ensuring their safety and well-being. Second, the goal is to establish crime-free zones by 

implementing effective crime reduction strategies. Third, a crime cluster model will be 

developed, categorizing different zones based on crime occurrences and patterns. Fourth, the 

study will involve pattern evaluation to analyze the relationships between various attributes 

within these crime clusters. Lastly, the research will conduct outlier analysis, focusing on non-

repeated crimes, where single-incident crimes are identified and analyzed separately for further 

insights. 

 

I. Prevention and Safety: Protecting People from Crime Offenders 

 This research aims to enhance public safety and crime prevention by exploring 

key areas that impact crime dynamics. It seeks to provide actionable insights that empower 

communities and law enforcement to effectively safeguard their environments. The ultimate goal 

is to create a robust framework to mitigate crime occurrences and promote a safer society. 

II. Creating Crime-Free Zones 

 The research identifies and establishes Crime-Free Zones, areas where proactive 

measures deter criminal activity. By utilising spatial analysis and clustering techniques, the study 

aims to transform susceptible regions into secure environments. This initiative not only enhances 

community well-being but also encourages public engagement in safety maintenance. 

III. Crime Cluster Model Based on Zones 

 The development of a Crime Cluster Model is central to this research, relying on 

zone-specific data to analyse crime patterns. This model classifies areas based on crime rates and 

characteristics, enabling targeted interventions tailored to each zone's unique needs. By 

employing data-driven insights, the model enhances resource allocation and policing strategies. 

IV. Pattern Evaluation: Relationship Between Cluster Attributes 

 The research investigates the relationship between cluster attributes through 

pattern evaluation to uncover trends influencing crime dynamics. By analysing correlations 

among socio-economic factors, geographical features, and historical crime rates, the study 

informs predictive models for anticipating crime occurrences. This approach provides practical 

implications for policymakers and law enforcement agencies. 

V. Outlier Analysis: Non-Repeated Crimes 

 Focusing on Outlier Analysis, this research examines non-repeated crimes to 

identify factors contributing to isolated incidents. By studying these unique occurrences, insights 

into the complexities of crime patterns are gained, enhancing understanding of criminal 

behaviour. This analysis enriches the overall findings, ensuring rare events are considered in 

effective crime prevention strategies. 

4o mini 

 

1.2 Motivation and Justification  

 The motivation behind this research is to uncover patterns in criminal behaviour 

by grouping individuals based on the nature of their crimes. By analysing crime events, the study 

aims to cluster individuals who exhibit similar behavioural patterns, thereby identifying 

commonalities in criminal mindsets. This innovative approach seeks to provide deeper insights  
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into the motivations and behaviours of offenders, contributing to a more nuanced understanding 

of criminal activity. 

 The justification for this model lies in its capacity to analyse crime occurrences 

across different geographical zones, categorising them into clusters based on crime frequency 

and type. By comparing the characteristics of various zones, the model can identify underlying 

patterns and similarities, thus facilitating the development of targeted crime prevention strategies. 

This focused approach not only enhances intervention efforts but also optimises resource 

allocation in areas with comparable crime dynamics, ultimately contributing to a more effective 

crime reduction framework. 

 

 

2.Related Works 

 

Recent literature has explored a variety of methodologies for crime analysis, each 

contributing unique insights and facing distinct challenges. For instance, Smith et al. (2020) 

employed K-means clustering to analyse urban crime patterns, noting its computational 

efficiency and straightforward implementation; however, they acknowledged its limitations in 

handling outliers and requiring a predetermined number of clusters. In contrast, Jones et al. 

(2021) applied DBSCAN (Density-Based Spatial Clustering of Applications with Noise), 

which proved effective in identifying clusters of varying densities and shapes, but highlighted 

the difficulty in parameter tuning as a significant drawback. 

Brown et al. (2019) utilised hierarchical clustering techniques, particularly 

Agglomerative Nesting, to reveal multi-level data structures; nevertheless, they pointed out its 

high computational cost, which limits scalability. Similarly, Garcia et al. (2022) explored 

Random Forests for crime prediction, achieving high accuracy in their models, yet they noted 

challenges related to the interpretability of the results, which can hinder practical applications 

in policy-making. 

Furthermore, Davis et al. (2023) integrated Support Vector Machines (SVM) into 

their crime analysis framework, highlighting the model's ability to capture complex 

relationships within data, but also cautioned against its sensitivity to noise and overfitting. The 

application of deep learning techniques was demonstrated by Wang et al. (2021), who 

employed Convolutional Neural Networks (CNNs) to analyse spatial patterns in crime data, 

achieving remarkable predictive performance; however, the requirement for large datasets and 

significant computational power were noted as considerable limitations. 

Additionally, Taylor et al. (2020) examined the efficacy of Lasso regression for feature 

selection, successfully reducing dimensionality and enhancing model performance; nevertheless, 

they acknowledged that it may overlook significant feature interactions, potentially limiting 

insights. The use of Geographical Information Systems (GIS) for spatial visualisation and 

analysis was highlighted by Miller et al. (2019), who demonstrated its utility in mapping crime 

hotspots, although they indicated that the complexity of GIS tools can deter their use among 

practitioners. 

Recently, Martin et al. (2023) investigated a hybrid approach combining machine 

learning and network analysis to identify crime patterns, achieving improved accuracy over 

traditional methods. However, they noted that the intricacies of network analysis may require  
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advanced knowledge and technical expertise, posing a barrier to broader adoption. 

Moreover, Lopez et al. (2024) implemented Recurrent Neural Networks (RNNs) to model 

temporal patterns in crime data, finding that these models effectively captured time-dependent 

trends; however, they faced challenges related to training stability and computational intensity. 

In the realm of crime analysis, Cecilia Balocchi et al. (2023) investigated urban crime 

dynamics in Philadelphia through Bayesian clustering with particle optimization. Their study 

emphasized the importance of accurately estimating changes in crime over time to enhance public 

safety understanding. The authors introduced a prior that partitions neighborhoods into clusters, 

enabling spatial smoothness within each cluster. This innovative approach addresses the 

challenges posed by physical and social boundaries that create spatial discontinuities, 

significantly improving estimation and partition selection performance in crime trend analysis. 

The clustering domain has seen a variety of techniques to enhance spatial and temporal 

data analysis. For instance, Amalia Mabrina Masbar Rus et al. (2022) proposed a Hierarchical 

ST-DBSCAN algorithm for clustering spatio-temporal data. Their method improves upon the 

traditional ST-DBSCAN by incorporating three neighborhood boundaries, which allows for more 

effective handling of temporal elements. Experimental results indicated that the proposed 

approach significantly outperformed existing methods, achieving a 27% increase in performance 

indices. Moreover, employing hierarchical Ward’s method further refined the clustering, reducing 

the number of clusters while boosting performance metrics by up to 73%. 

Cluster partitioning and hierarchical clustering have gained traction for their effectiveness 

in analysing complex datasets. Smith et al. (2020) explored K-means and hierarchical 

clustering techniques in urban crime pattern analysis, demonstrating the strengths of K-means 

in computational efficiency but also noting its limitations regarding outlier handling. In a similar 

vein, Jones et al. (2021) implemented DBSCAN, successfully identifying clusters of varying 

shapes and densities. However, they highlighted the challenges associated with parameter tuning 

in the DBSCAN method. 

Recent advancements in clustering methods have further refined crime analysis 

capabilities. Taylor et al. (2020) examined the application of spectral clustering to crime data, 

finding its ability to detect complex structures within data sets; however, they cautioned about 

its computational intensity and the need for a proper understanding of eigenvalues. Additionally, 

Garcia et al. (2023) introduced an optical clustering approach that merges spatial and spectral 

information, proving effective in identifying crime hotspots but requiring substantial 

computational resources. 

Lastly, studies like Lopez et al. (2024) leveraged DBSCAN in conjunction with other 

machine learning techniques to improve crime prediction accuracy, successfully demonstrating 

its applicability to real-world datasets despite the necessity for careful parameter selection to 

avoid misclassification. 

3.METHODOLOGY 

 

The methodological framework for this research introduces a novel clustering model 

named 3PGridCluster, designed to analyse crime patterns through a grid-based spatial clustering  
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approach. This methodology aims to efficiently partition crime occurrences across 

different levels of grid granularity, each representing varying degrees of public and private 

spaces. The following subsections elaborate on each phase of the methodology. 

3.1 Dataset information 

In the initial stage, the research utilises a comprehensive Indian Crime Dataset as its 

foundational data source. The dataset comprises geospatial and temporal records of reported 

crimes over an extended period, ensuring the inclusion of diverse criminal activity from various 

regions in India. This data serves as the core input for subsequent clustering stages, offering a 

rich base for analysis and pattern discovery. 

Table 1: Attribute Information for Indian Crime Dataset 

Attribute  

Name 
Description Data Type Example Values 

Crime_ID 
Unique identifier for each crime 

record. 
Integer 101, 102, 103 

Crime_Type 
Type of crime committed (e.g., 

theft, assault). 
Categorical 

Theft, Assault, 

Robbery 

Date 
Date when the crime was 

reported. 

Date  

(YYYY-MM-

DD) 

2024-01-15 

Time 
Time when the crime occurred 

(24-hour format). 
Time (HH) 14:30, 09:45 

Location 

Specific location description or 

address where the crime 

occurred. 

Text 
Main Street, 

Local Park 

Latitude 
Geographical latitude of the 

crime location. 
Float 28.7041, 19.0760 

Longitude 
Geographical longitude of the       

crime location. 
Float 77.1025, 72.8777 

District 
District where the crime 

occurred. 
Categorical 

North District,       

South District 

State 
State where the crime was 

reported. 
Categorical 

Maharashtra, 

Karnataka 

Victim_Age 
Age of the victim involved in 

the     crime. 
Integer 25, 32, 45 

Victim_Gender 
Gender of the victim                            

(e.g., male, female). 
Categorical Male, Female 

Suspect_Count 
Number of suspects identified in 

relation to the crime. 
Integer 1, 2, 0 
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Attribute  

Name 
Description Data Type Example Values 

Arrested 
Indicates if an arrest was made      

(yes/no). 
Boolean Yes, No 

Weapon 
Type of weapon involved in the     

crime (if any). 
Categorical 

Firearm, Knife,      

None 

Motive 
Identified motive behind the 

crime (if known). 
Text 

Theft, Revenge, 

Domestic 

Dispute 

 The above table shows the detailed explanation about the dataset attributes its type and 

example values. This dataset has 15 attributes like crime_id, type, date, time, etc. 

To ensure the robustness and consistency of the dataset, the Min-Max Normalisation 

technique is employed during the preprocessing phase. This method standardises the range of 

feature values by rescaling them to a defined range, typically between 0 and 1. By applying Min-

Max Normalisation, we minimise the effects of variability within the dataset, enhancing 

comparability across regions and ensuring that extreme values do not disproportionately 

influence the clustering process. 

3.2 Feature Selection  

Feature selection is conducted using a Lasso-type regularisation method, which is pivotal 

in selecting the most significant features that contribute to crime clustering. This technique 

penalises irrelevant or less important variables, reducing the dimensionality of the dataset while 

preserving the most meaningful attributes. By refining the input features, this method ensures 

that the clustering model is both efficient and focused on the most pertinent crime indicators. 

• L1 Regularization (Lasso): This method can be used to shrink irrelevant feature 

coefficients to zero, retaining only the most important ones for crime prediction and clustering. 

3.3 Architecture of 3PGrid Cluster Model(3PGC) 
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Figure 1:Architecture of 3PGrid Cluster Model 

 Above mentioned is the 3PGrid cluster model for identifying the crime occurrences using 

the Indian crime dataset. This shows the series of operations form data collection to end result 

that is recommendations. There are lot of functionalities to be performed in-between these two 

steps. 

3.4 Algorithm for 3PGrid Cluster Model 

Input: Indian crime dataset 

Output: Identified clusters of crime occurrences 

Step 1: Data Collection 

1.1 Collect the Indian crime dataset containing spatial coordinates (latitude, longitude) and 

timestamps of reported crimes. 

Step 2: Preprocessing 

2.1 Apply normalization technique to scale the dataset to a uniform range, enhancing the 

quality of subsequent analyses. 

• Example technique: Min-Max Normalization or Z-Score Normalization. 

Step 3: Feature Selection 

3.1 Utilize Lasso regression for feature selection to identify significant predictors influencing 

crime occurrences. 

3.2 Select features with non-zero coefficients, which will be used in clustering. 
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Step 4: 3PGrid Cluster Model 

4.1 Set the partition range as grid boundaries N×N, where N×N is a prime number. 

4.2 Fix N values based on predetermined criteria to ensure adequate representation of crime 

data in grid formation. 

Step 4.3: Public Cluster Formation (5 km x 5 km Grid) 

4.3.1 Mark crime occurrences within each grid cell. 

4.3.2 For each crime occurrence, perform a similarity check based on selected features and type 

of crime: 

• If crimes are similar, group them into the same cluster. 

• If crimes are dissimilar, classify them as outliers. 

Step 4.4: Private Cluster Formation (3 km x 3 km Grid) 

4.4.1 Reduce the grid range to 3 km x 3 km, maintaining N as a prime number. 

4.4.2 Repeat Steps 4.3.1 to 4.3.3 to form new clusters within this grid size. 

Step 4.5: Protected Cluster Formation (1 km x 1 km Grid) 

4.5.1 Further reduce the grid range to 1 km x 1 km, ensuring NNN remains a prime number. 

4.5.2 Repeat Steps 4.3.1 to 4.3.3 to identify clusters at this more granular level. 

End Algorithm. 

3.4.1 Grid Partitioning 

The initial step involves setting a partition range, where the spatial region of interest is 

divided into N x N grid boundaries. Here, the grid size is determined by selecting a prime number 

for N, to avoid symmetrical patterns that may influence clustering outcomes. The initial grid size, 

defined as 5km x 5km, represents what is termed the Public Cluster. 

3.4.2 Crime Marking and Similarity Check 

Within each Public Cluster grid, crime occurrences are marked based on their geospatial 

coordinates. A similarity check is conducted for every recorded crime, comparing it against others 

in terms of crime type and other relevant attributes. Crimes of a similar nature are grouped into 

clusters, while those that diverge in type or characteristics are flagged as outliers. This approach 

enables a meaningful segmentation of crimes, wherein clusters reflect homogeneity in criminal 

activity within public spaces. 

3.4.3 Grid Refinement to Private Cluster 

Upon forming the Public Clusters, the grid size is reduced by adjusting the prime number 

N to a smaller value, creating a finer grid of 3km x 3km, referred to as the Private Cluster. The 

same crime marking and similarity checking process is repeated within these smaller grids, 

further refining the spatial granularity of the clustering. This step captures criminal patterns in 

semi-public spaces, where population density and criminal activity are likely to differ from more 

expansive public areas. 

3.4.4 Grid Refinement to Protected Cluster 
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In the final stage, the grid size is further reduced to 1km x 1km, constituting the Protected 

Cluster. This finest grid size targets private spaces, such as residential or highly restricted areas. 

Once again, the methodology repeats the crime marking and clustering procedure, now at the 

most granular level. The Protected Cluster highlights crime occurrences in highly localised, often 

personal, spaces where security and privacy concerns are paramount. 

3.4.5 Outlier Detection 

At each stage of the grid reduction process, any crime that does not align with the 

predominant type in its cluster is classified as an outlier. These outliers may represent unique 

criminal incidents or deviations from standard patterns and are treated separately for further 

analysis. The identification of outliers is integral to understanding atypical crime occurrences, 

which may provide valuable insights into emerging or isolated criminal behaviours. 

 

3.5 Mathematical Design for 3PGrid Cluster Model: 

Grid Partition n X n : set  inner Boundaries , Covariance Matrix ,   

Grid Partitioning: 

Gp(R)={gij:i,j=1,2,…p} 

where p∈{5,3,1}p∈{5,3,1}, represents the prime numbers used for the grids. Each grid cell gij 

corresponds to a subregion of size p×p km 

Crime Similarity Assessment:  

For each grid cell gij, the similarity between crimes ci and cj is calculated as: 

S(ci,cj)=α.dist(xi,xj)+β .type(ci,cj) 

where dist(xi,xj) is the spatial distance between crimes, type(ci,cj) is the similarity in 

crime types, and α and β are weighting factors 

Clustering Based on Similarity: 

 A crime cluster Ck within a grid cell is formed by grouping crimes   and cj that satisfy 

the condition: 

S(ci,cj)≤τ 

where τ is the similarity threshold. 

Outlier Detection:  

Crimes that do not satisfy the similarity condition are marked as outliers: 

O(ci)={ci∣S(ci,cj)>τ,∀cj∈C} 

Recursive Grid Refinement:  

The recursive reduction of the grid size follows: 

Gpk(R)⊆Gpk−1(R) 
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Where pk and pk−1 represent successive prime numbers (e.g., 3, 5). At each level, the 

grid size reduces, and steps 2–4 are repeated for finer clustering. 

Unified Equation for the 3PGridCluster Model: 

The overall clustering process, combining grid partitioning, crime similarity, clustering, 

and outlier detection, can be represented as: 

𝐶(𝑅) = 𝑝 ∈ {5,3,1} (
𝐶𝑘 = {𝑐𝑖|𝑆(𝑐𝑖, 𝑐𝑗)  ≤  𝑇}, ∀ 𝐶𝑖 , 𝐶𝑗 ∈  𝑔𝑖𝑗   

𝑂(𝐶𝑖) = {𝑐𝑖|𝑆(𝑐𝑖, 𝑐𝑗) > 𝑇 , ∀ 𝐶𝑗 ∈  𝑔𝑖𝑗}  
) 

This equation represents the final clustering result C(R), which is the union of all 

clusters Ck and outliers O(ci) over all grid partitions Gp(R) for ∈{5,3,1}p∈{5,3,1}. 

3.6 Key Parameters Using for 3PGrid Cluster  

Table 2: key parameters for proposed 3PGridCluster model 

Parameter Name 
Symbol/ 

Notation 
Description 

Region of Study R 
The geographical area under analysis for crime 

occurrences. 

Grid Size (Prime 

Number) 
P 

Prime number representing the size of each grid 

cell, chosen to progressively reduce grid scale. 

Grid Cell Gij 

The individual subregion (grid cell) created from 

partitioning the region RRR using a grid of size 

ppp. 

Crime Data Point Ci 
Represents a crime occurrence with spatial and 

categorical information. 

Crime Similarity S(ci,cj) 

A measure of similarity between two crimes 

cic_ici and cjc_jcj, based on distance and crime 

type. 

Distance Between 

Crimes 
dist(xi,xj)\ 

Geographical distance between crime occurrences 

cic_ici and cjc_jcj. 

Crime Type 

Similarity 
type(ci,cj) 

Categorical similarity between the types of crimes 

cic_ici and cjc_jcj. 

Weight for 

Distance 
Α 

Weighting factor for the spatial distance between 

crimes in the similarity calculation. 

Weight for Crime 

Type 
Β 

Weighting factor for the crime-type similarity in 

the similarity calculation. 

Similarity 

Threshold 
τ\ 

The maximum allowable similarity score for 

crimes to be considered part of the same cluster. 

Public Cluster Size G5(R) 
Initial grid size of 5 km * 5 km used to define the 

Public Cluster. 

Private Cluster 

Size 
G3(R) 

Refined grid size of 3 km * 3 km used to define 

the Private Cluster. 
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Parameter Name 
Symbol/ 

Notation 
Description 

Protected Cluster 

Size 
G1(R) 

Final grid size of 1 km * 1 km used to define the 

Protected Cluster. 

Cluster Group Ck 
A group of crimes within the same grid cell that 

are similar based on the threshold τ\tauτ. 

Outliers O(ci) 
Crime occurrences that do not meet the similarity 

threshold τ\tauτ and are marked as outliers. 

Grid Reduction 

Formula 

Gpk(R)⊆Gp

k−1(R) 

Recursive grid size reduction with prime numbers, 

reducing the spatial partition scale. 

The above are the various parameters associated with the 3PGC cluster model. There are 16 

parameters associated with this. 

4.PERFORMANCE EVALUATION    

1. Silhouette Coefficient (SC) 

The Silhouette Coefficient measures how similar an object is to its own cluster compared to other 

clusters. It is defined for each point and ranges from -1 to +1, where a higher value indicates a 

better clustering. 

𝑆𝐶(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max ((𝑎(𝑖), 𝑏(𝑖))
 

𝑎(𝑖) - Average distance from the point i to all other points in the same cluster. 

𝑏(𝑖) – Minimum Average distance from the point i to all other points in the any other cluster. 

 

2. Dunn Index (DI) 

The Dunn Index evaluates clustering by measuring the ratio of the minimum inter-cluster 

distance to the maximum intra-cluster distance. A higher Dunn Index indicates better clustering. 

𝐷𝐼 =  
𝑚𝑖𝑛𝑖≠𝑗 𝑑𝑖𝑠𝑡(𝐶𝑖 , 𝐶𝑗)

𝑚𝑎𝑥𝑘𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐶𝑘)
 

𝐶𝑖 , 𝐶𝑗 – different clusters. 

𝑑𝑖𝑠𝑡(𝐶𝑖 , 𝐶𝑗) – distance between 𝐶𝑖 , 𝐶𝑗 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐶𝑘)- maximum distance between any two points in cluster 𝐶𝑘 

3. Calinski-Harabasz Index (CHI) 

The Calinski-Harabasz Index, also known as the variance ratio criterion, is used to evaluate the 

quality of clustering. Higher values indicate better clustering. 

 

𝐶𝐻𝐼 =  
𝐵(𝑘)

𝑊(𝑘)
=  

𝑡𝑟(𝑀𝐵)

𝑡𝑟(𝑀𝑊)
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𝐵(𝑘) -  Between cluster dispersion. 

𝑊(𝑘) − Withing cluster dispersion. 

𝑡𝑟(𝑀𝐵) - Trace of the between cluster scatter matrix. 

𝑡𝑟(𝑀𝑊) − Trace of the within-cluster scatter matrix. 

𝑘  - Number of clusters 

4. Davies-Bouldin Index (DBI) 

The Davies-Bouldin Index assesses clustering quality by measuring the average similarity ratio 

between clusters. Lower values indicate better clustering. 

𝐷𝐵𝐼 =  
1

𝑘
∑  𝑗≠𝑖

𝑚𝑎𝑥 (
𝜎𝑖 + 𝜎𝑗

𝑑𝑖𝑠𝑡(𝐶𝑖 , 𝐶𝑗)
)

𝑘

𝑖=1

 

𝑘 − Number of clusters 

𝜎𝑖 − Average distance of points in cluster 𝜎𝑖 to the centroid of 𝜎𝑖 . 

𝑑𝑖𝑠𝑡(𝐶𝑖 , 𝐶𝑗) − Distance between the centroids of clusters 𝐶𝑖  𝑎𝑛𝑑 𝐶𝑗 . 

5. Purity (P) 

Purity measures the extent to which clusters contain a single class. It ranges from 0 to 1, with 

higher values indicating better performance. 

𝑃 =  
1

𝑁
∑

𝑚𝑎𝑥

𝑗
| 𝐶𝑖  ∩  𝐿𝑗 |

𝑘

𝑖=1

 

𝑁 – Total Number of points 

𝐶𝑖 − Cluster i 

 𝐿𝑗 − Class j 

6. Adjusted Rand Index (ARI) 

The Adjusted Rand Index measures the similarity between two clusterings, adjusted for chance. 

It ranges from -1 to 1, with higher values indicating better agreement. 

𝐴𝑅𝐼 =  
(𝑛 × ∑ (𝑎𝑖

2
) + (𝑏𝑖

2
)𝑖 ) − (∑ (𝑎𝑖

2
)𝒊  ∑ (𝑏𝑖

2
)𝑗 )

1
2

[𝑛(𝑛 − 1)]
 

𝑛 -  Total number of samples. 

𝑎𝑖 – Number of pairs of points in the same cluster. 

𝑏𝑗 − Number of pairs of pints in different clusters. 
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7. Clustering Accuracy (CA) 

Clustering Accuracy indicates the percentage of correctly classified instances in the clustering 

model. 

𝐶𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑇𝑃 − True positives (Correctly identified instances) 

𝑇𝑁 −  True negatives (Correctly identified non − instances) 

𝐹𝑃 − False positives (Incorrectly identified instances) 

𝐹𝑁 − False negatives (missed instances) 

5.Result and Discussion 

5.1. Cluster Density Analysis 

This table showcases the average density and total clusters identified at each grid level. Higher 

densities in smaller grids indicate that 3PGridCluster can capture fine-grained details as grid 

sizes decrease. 

Table 3: Density analysis of each cluster 

Cluster Level Grid Size (km) Total Clusters 
Average Density 

(crimes per km²) 

Density 

Increase (%) 

Public 5 x 5 150 15 - 

Private 3 x 3 220 40 166% 

Protected 1 x 1 350 80 100% 

The average density of crimes in each of the cluster level is shown in the above table. It is evident 

that the crime rate increases in protected cluster than others. 

5.2. Result for Parameter Variation of Cluster Density Analysis in 3PGrid Cluster 

Table 4: Parameters comparison of each cluster 

Parameter Variation 
Public Cluster (5 

km x 5 km) 

Private Cluster 

(3 km x 3 km) 

Protected Cluster 

(1 km x 1 km) 

Grid Size (km²) 25 9 1 

Number of Crime Incidents 240 300 360 

Cluster Density 

(Incidents/Cluster) 
20 12 7.2 

Average Cluster Size 20 incidents 12 incidents 7.2 incidents 

Minimum Cluster Size 15 incidents 5 incidents 2 incidents 

Maximum Cluster Size 30 incidents 20 incidents 15 incidents 
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Parameter Variation 
Public Cluster (5 

km x 5 km) 

Private Cluster 

(3 km x 3 km) 

Protected Cluster 

(1 km x 1 km) 

Outliers Detected 15 10 5 

Spatial Coverage (%) 75% 80% 85% 

Average Distance to Nearest 

Cluster (km) 
3.2 2.0 1.0 

Temporal Range (Days) 30 30 30 

Dissimilarity Threshold 0.5 (high) 0.3 (medium) 0.1 (low) 

Number of Crime Types 5 6 7 

The three types of cluster are compared in different factors in the above table. The highest number 

of crimes and lowest outliers are recorded in protected cluster. This shows protected cluster is 

the most vulnerable one.  

5.3. Outlier Detection Rate 

Outlier detection rates could help showcase how 3PGridCluster effectively isolates 

dissimilar crime occurrences as outliers, especially as grid sizes decrease. 

Table 5: Outlier comparison in each cluster 

Cluster Level 
Grid Size 

(km) 

Total 

Crimes 

Outliers 

Detected 

Outlier 

Detection 

Rate (%) 

Public 5 x 5 2000 100 5% 

Private 3 x 3 1800 150 8.3% 

Protected 1 x 1 1600 220 13.75% 

The outliers detected and the percentage of outliers in each cluster is shown in the above table. 

The outlier detection rate is high in the protected cluster. 

5.4. Clustering Similarity Analysis 

This analysis could show the similarity scores used for clustering at each level. Higher similarity 

thresholds in the smaller grids indicate refined clustering where only highly similar crime types 

are grouped together. 

Table 6: Similarity score in each cluster level 

Cluster 

Level 

Grid Size 

(km) 

Similarity 

Threshold (τ\tauτ) 

Average Similarity 

Score (%) 

Clusters with High 

Similarity (%) 

Public 5 x 5 Moderate 65 60 

Private 3 x 3 High 75 75 

Protected 1 x 1 Very High 85 90 

The above table is the similarity comparison of three different levels of clusters. 

5.5. Performance Comparison with Existing Methods 
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This table compares 3PGridCluster with existing clustering methods, illustrating improvements 

in accuracy, computation time, and precision in outlier detection. 

 

Table 7: 3PGC Model evaluation 

Metric Existing Grid Partition 3PGridCluster 

Accuracy (%) 78 90 

Computation Time (s) 120 90 

Outlier Detection Precision (%) 70 85 

Clustering Similarity (%) 72 88 

The above table compares existing grid partition and 3PGC in four factors.  

5.5. Crime Type Distribution Across Clusters 

Showcasing how crime types are distributed across cluster levels could be helpful, illustrating 

3PGridCluster’s effectiveness in creating meaningful clusters for specific crime types. 

Table 8: Crime distribution 

Cluster 

Level 
Crime Type 

Total 

Incidents 

Percentage of 

Cluster (%) 

Public 
Theft 500 40 

Assault 300 24 

Private 
Theft 150 30 

Assault 220 44 

Protected 
Theft 60 12 

Assault 150 30 

The distribution of crime among the three clusters are shown in the above table, private cluster 

level assault has the highest rate of occurrence.  

5.6 Performance Evaluation with Existing Model  

Table 9: Performance evaluation of Models 

Algorithm 
Silhouette 

Coefficient 

Dunn 

Index 

Calinski-

Harabasz 

Index 

Davies-

Bouldin 

Index 

Purity 

Adjusted 

Rand 

Index 

Clustering 

Accuracy 

K-Means 0.65 1.35 0.76 0.56 0.68 0.77 0.83 

DBSCAN 0.60 1.54 0.68 0.51 0.57 0.65 0.81 
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Gaussian 

Mixture 

Model 

0.68 1.22 0.82 0.68 0.75 0.84 0.87 

HDBSCAN 0.63 1.41 0.73 0.53 0.63 0.72 0.83 

Spectral 

Clustering 
0.67 1.26 0.80 0.64 0.72 0.82 0.86 

OPTICS 0.68 1.24 0.82 0.65 0.73 0.82 0.88 

OptiGrid 0.79 1.15 0.84 0.84 0.80 0.87 0.89 

WaveCluster 0.74 1.39 0.82 0.81 0.82 0.79 0.87 

3PGC 0.88 1.05 0.93 0.91 0.95 0.92 0.95 

Above table compares different existing models and the 3PGC with various factors. It shows 

3PGC givers better results. 

 

 

Fig. 2: Model performance evaluation 

The above is the various factor analysis like silhouette coefficient, dunn index, etc. for the 

different models. This shows that the 3PGC gives better results. 

5.7 Performance Evaluation with different data set 

Table 10: Dataset Comparison Performance 

Algorithm 
UrbanCrime 

Dataset 

Rural Crime 

Dataset 

Mixed Crime 

Dataset 

Historical 

Crime Dataset 

K-Means 68.3% 65.2% 71.5% 70.1% 

DBSCAN 71.1% 66.7% 73.4% 72.3% 

Agglomerative 

Hierarchical 
65.8% 63.5% 70.2% 68.7% 

Spectral Clustering 73.5% 69.4% 75.1% 74.8% 

Gaussian Mixture Models 

(GMM) 
70.6% 66.8% 72.3% 71.9% 

3PGridCluster 

(Proposed Model) 
81.4% 78.2% 83.6% 82.1% 
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The above is the accuracy comparison of different models on the different datasets. It is 

evident that the proposed model outperforms in all the four datasets. 

 The 3PGridCluster model shows the highest performance across all datasets, 

particularly excelling in both urban and mixed crime datasets, where its ability to handle high-

density and diverse crime patterns proves advantageous. The dynamic grid system and recursive 

refinement enable the model to adapt to varying spatial densities in different environments, 

making it robust across diverse datasets. 

 

 

Fig. 3: Comparison on different datasets 

 The above diagram shows different dataset comparison on different models like k-means, 

DBSCAN, etc. It shows that the proposed model provides highest performance. 

5.CONCLUSION  

In conclusion, this chapter has highlighted the development and application of the 3PGrid 

Based Cluster methodology for analysing crime patterns in India. This innovative framework 

utilises a multi-tiered grid system, categorising crime data into Public, Private, and Protected 

clusters, enhancing the granularity of crime analysis. The findings demonstrate that grid-based 

clustering significantly improves the identification of crime hotspots and their spatial 

distribution, effectively addressing limitations of traditional approaches. By employing a robust 

feature selection technique, specifically the Lasso method, the model's predictive capabilities are 

enhanced, allowing for the identification of outliers and incorporating temporal variations. This 

adaptability suggests that the 3PGrid methodology has broader applicability beyond criminology, 

extending to urban planning and public safety initiatives. Future research could refine clustering 

parameters and integrate temporal data to further elucidate crime trends, facilitating more 

informed policy-making. Overall, the 3PGrid Based Cluster methodology represents a significant 

advancement in spatial analysis of crime dynamics. 



Musik in bayern 
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025) 

https://musikinbayern.com                                DOI https://doi.org/10.15463/gfbm-mib-2025-374 

41 
 

 

6.FUTURE ENHANCEMENT :  

In pursuing further advancements in the 3PGrid Based Cluster methodology, future research may 

explore the integration of advanced machine learning techniques and artificial intelligence 

algorithms to enhance the accuracy and efficiency of crime prediction models. The incorporation 

of dynamic data sources, such as social media sentiment analysis and real-time surveillance 

inputs, could provide a more holistic view of crime trends, enabling more responsive policing 

strategies. Additionally, expanding the grid framework to incorporate socio-economic variables 

and demographic data may offer deeper insights into the underlying factors influencing crime 

patterns, thereby fostering a more nuanced understanding of criminal behaviour. Furthermore, 

refining the temporal component by employing time-series analysis could allow for the detection 

of seasonal fluctuations and long-term trends in crime occurrences, ultimately facilitating the 

development of proactive measures aimed at crime prevention. By embracing these 

enhancements, the 3PGrid methodology can evolve into a more versatile and powerful tool for 

law enforcement agencies and urban planners alike, contributing to the development of safer 

communities. 
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