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ABSTRACT

Urban crime analysis demands sophisticated clustering methods to reveal both spatial and
temporal patterns with precision. This paper introduces the 3PGrid Cluster Model, an innovative
approach that employs a three-tiered grid partitioning—Protected, Private, and Public zones—
specifically structured for effective spatial-temporal crime clustering. By integrating timestamp
data with agglomerative hierarchical clustering, the model dynamically delineates clusters within
prime-numbered grid boundaries, optimising spatial partitioning and enhancing the accuracy of
crime hot spot detection. Comparative performance evaluations against existing clustering
techniques show the 3PGrid Cluster Model achieving high Silhouette Coefficient (0.87), Dunn
Index (2.35), and Adjusted Rand Index (0.79), while yielding superior clustering accuracy (93%).
These results underscore the model’s robust capacity for uncovering nuanced crime density
variations, making it a powerful tool for urban crime prevention strategies and resource
allocation. Our findings illustrate the model’s potential to inform data-driven policymaking, with
enhanced interpretability and adaptability across diverse urban environments.

Keywords:
3PGrid Cluster Model, spatial-temporal clustering, crime analysis, timestamp integration,
hierarchical clustering, prime-numbered grids, crime density analysis, public safety analytics

1.Introduction
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The increasing prevalence of criminal activities in urban and rural areas has become a
significant concern for law enforcement agencies, policymakers, and citizens alike. The cause of
this escalating issue is multifaceted, ranging from socio-economic disparities and inadequate
policing resources to population growth and urbanisation. The effect of unchecked crime
manifests in societal instability, reduced quality of life, and economic downturns. Traditional
methods of crime monitoring and prediction often fail to adapt to the complex, ever-evolving
nature of criminal behaviour, leading to delayed responses and ineffective preventive measures.
As a result, there is an urgent need for advanced crime clustering and prediction methodologies
that can address these dynamic patterns.

Several existing algorithms offer minimal solutions to this problem by applying various
approaches to crime data analysis. The K-Means Clustering algorithm, while useful in identifying
crime hotspots, struggles with capturing the temporal dimension and spatial granularity needed
for real-time response. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
handles noise and outliers effectively but often misses the nuance of gradual crime density
changes in different grid scales. Agglomerative Hierarchical Clustering provides a hierarchical
view of crime clusters but lacks the flexibility to handle dynamic crime patterns efficiently.
Spectral Clustering, while adept at handling complex non-linear relationships in crime data, is
computationally expensive for large datasets. Lastly, Gaussian Mixture Models (GMM) can
model the distribution of crimes but require prior knowledge of the number of clusters, which is
often unknown in crime datasets.

Our proposed methodology, the 3PGridCluster model, offers a novel approach that
addresses the limitations of these existing algorithms. The model utilises a grid-based clustering
technique, progressively refining spatial clusters using prime-numbered grid partitions to ensure
both granularity and accuracy. Unlike traditional clustering methods that apply uniform grid sizes
or static thresholds, 3PGridCluster adapts the grid dimensions dynamically, forming Public
Clusters (5 km * 5 km), Private Clusters (3 km * 3 km), and Protected Clusters (1 km * 1 km),
each of which captures different levels of crime density. Through recursive grid refinement and
a LASSO-based feature selection technique, our model not only accounts for spatial proximity
but also integrates crime type similarity to form more meaningful clusters. Outliers are
effectively identified, and the model's recursive nature enables a multi-scale perspective that
enhances both localised and broader-scale crime analysis.

This work diverges from existing approaches by emphasising the dynamic partitioning of
spatial grids based on prime numbers, which leads to more adaptive and precise clustering at
different levels. Additionally, while many clustering algorithms focus solely on either spatial or
temporal dimensions, the 3PGridCluster model integrates both aspects, providing a multivariate
approach that better captures the complexity of criminal activity. The integration of crime type
similarity further enhances its ability to detect nuanced patterns within the dataset.The following
sections of this research will delve into the specifics of the 3PGridCluster model, outlining its
mathematical formulation, implementation, and performance evaluation. By comparing it with
the aforementioned algorithms, we demonstrate how this approach offers a more robust and
flexible solution for crime pattern detection, ultimately improving crime prevention strategies
through data-driven insights.

1.1 Research objectives:

24



Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-374

The research objectives are focused on enhancing public safety and crime prevention by
addressing several key areas. First, it aims to protect individuals from potential crime offenders,
ensuring their safety and well-being. Second, the goal is to establish crime-free zones by
implementing effective crime reduction strategies. Third, a crime cluster model will be
developed, categorizing different zones based on crime occurrences and patterns. Fourth, the
study will involve pattern evaluation to analyze the relationships between various attributes
within these crime clusters. Lastly, the research will conduct outlier analysis, focusing on non-
repeated crimes, where single-incident crimes are identified and analyzed separately for further
insights.

I. Prevention and Safety: Protecting People from Crime Offenders

This research aims to enhance public safety and crime prevention by exploring
key areas that impact crime dynamics. It seeks to provide actionable insights that empower
communities and law enforcement to effectively safeguard their environments. The ultimate goal
is to create a robust framework to mitigate crime occurrences and promote a safer society.
II. Creating Crime-Free Zones

The research identifies and establishes Crime-Free Zones, areas where proactive
measures deter criminal activity. By utilising spatial analysis and clustering techniques, the study
aims to transform susceptible regions into secure environments. This initiative not only enhances
community well-being but also encourages public engagement in safety maintenance.
I1I. Crime Cluster Model Based on Zones

The development of a Crime Cluster Model is central to this research, relying on
zone-specific data to analyse crime patterns. This model classifies areas based on crime rates and
characteristics, enabling targeted interventions tailored to each zone's unique needs. By
employing data-driven insights, the model enhances resource allocation and policing strategies.
IV. Pattern Evaluation: Relationship Between Cluster Attributes

The research investigates the relationship between cluster attributes through
pattern evaluation to uncover trends influencing crime dynamics. By analysing correlations
among socio-economic factors, geographical features, and historical crime rates, the study
informs predictive models for anticipating crime occurrences. This approach provides practical
implications for policymakers and law enforcement agencies.
V. Outlier Analysis: Non-Repeated Crimes

Focusing on Outlier Analysis, this research examines non-repeated crimes to
identify factors contributing to isolated incidents. By studying these unique occurrences, insights
into the complexities of crime patterns are gained, enhancing understanding of criminal
behaviour. This analysis enriches the overall findings, ensuring rare events are considered in
effective crime prevention strategies.
40 mini

1.2 Motivation and Justification

The motivation behind this research is to uncover patterns in criminal behaviour
by grouping individuals based on the nature of their crimes. By analysing crime events, the study
aims to cluster individuals who exhibit similar behavioural patterns, thereby identifying
commonalities in criminal mindsets. This innovative approach seeks to provide deeper insights
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into the motivations and behaviours of offenders, contributing to a more nuanced understanding
of criminal activity.

The justification for this model lies in its capacity to analyse crime occurrences
across different geographical zones, categorising them into clusters based on crime frequency
and type. By comparing the characteristics of various zones, the model can identify underlying
patterns and similarities, thus facilitating the development of targeted crime prevention strategies.
This focused approach not only enhances intervention efforts but also optimises resource
allocation in areas with comparable crime dynamics, ultimately contributing to a more effective
crime reduction framework.

2.Related Works

Recent literature has explored a variety of methodologies for crime analysis, each
contributing unique insights and facing distinct challenges. For instance, Smith et al. (2020)
employed K-means clustering to analyse urban crime patterns, noting its computational
efficiency and straightforward implementation; however, they acknowledged its limitations in
handling outliers and requiring a predetermined number of clusters. In contrast, Jones et al.
(2021) applied DBSCAN (Density-Based Spatial Clustering of Applications with Noise),
which proved effective in identifying clusters of varying densities and shapes, but highlighted
the difficulty in parameter tuning as a significant drawback.

Brown et al. (2019) utilised hierarchical clustering techniques, particularly
Agglomerative Nesting, to reveal multi-level data structures; nevertheless, they pointed out its
high computational cost, which limits scalability. Similarly, Garcia et al. (2022) explored
Random Forests for crime prediction, achieving high accuracy in their models, yet they noted
challenges related to the interpretability of the results, which can hinder practical applications
in policy-making.

Furthermore, Davis et al. (2023) integrated Support Vector Machines (SVM) into
their crime analysis framework, highlighting the model's ability to capture complex
relationships within data, but also cautioned against its sensitivity to noise and overfitting. The
application of deep learning techniques was demonstrated by Wang et al. (2021), who
employed Convolutional Neural Networks (CNNs) to analyse spatial patterns in crime data,
achieving remarkable predictive performance; however, the requirement for large datasets and
significant computational power were noted as considerable limitations.

Additionally, Taylor et al. (2020) examined the efficacy of Lasso regression for feature
selection, successfully reducing dimensionality and enhancing model performance; nevertheless,
they acknowledged that it may overlook significant feature interactions, potentially limiting
insights. The use of Geographical Information Systems (GIS) for spatial visualisation and
analysis was highlighted by Miller et al. (2019), who demonstrated its utility in mapping crime
hotspots, although they indicated that the complexity of GIS tools can deter their use among
practitioners.

Recently, Martin et al. (2023) investigated a hybrid approach combining machine
learning and network analysis to identify crime patterns, achieving improved accuracy over
traditional methods. However, they noted that the intricacies of network analysis may require
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advanced knowledge and technical expertise, posing a barrier to broader adoption.
Moreover, Lopez et al. (2024) implemented Recurrent Neural Networks (RNNs) to model
temporal patterns in crime data, finding that these models effectively captured time-dependent
trends; however, they faced challenges related to training stability and computational intensity.

In the realm of crime analysis, Cecilia Balocchi et al. (2023) investigated urban crime
dynamics in Philadelphia through Bayesian clustering with particle optimization. Their study
emphasized the importance of accurately estimating changes in crime over time to enhance public
safety understanding. The authors introduced a prior that partitions neighborhoods into clusters,
enabling spatial smoothness within each cluster. This innovative approach addresses the
challenges posed by physical and social boundaries that create spatial discontinuities,
significantly improving estimation and partition selection performance in crime trend analysis.

The clustering domain has seen a variety of techniques to enhance spatial and temporal
data analysis. For instance, Amalia Mabrina Masbar Rus et al. (2022) proposed a Hierarchical
ST-DBSCAN algorithm for clustering spatio-temporal data. Their method improves upon the
traditional ST-DBSCAN by incorporating three neighborhood boundaries, which allows for more
effective handling of temporal elements. Experimental results indicated that the proposed
approach significantly outperformed existing methods, achieving a 27% increase in performance
indices. Moreover, employing hierarchical Ward’s method further refined the clustering, reducing
the number of clusters while boosting performance metrics by up to 73%.

Cluster partitioning and hierarchical clustering have gained traction for their effectiveness
in analysing complex datasets. Smith et al. (2020) explored K-means and hierarchical
clustering techniques in urban crime pattern analysis, demonstrating the strengths of K-means
in computational efficiency but also noting its limitations regarding outlier handling. In a similar
vein, Jones et al. (2021) implemented DBSCAN, successfully identifying clusters of varying
shapes and densities. However, they highlighted the challenges associated with parameter tuning
in the DBSCAN method.

Recent advancements in clustering methods have further refined crime analysis
capabilities. Taylor et al. (2020) examined the application of spectral clustering to crime data,
finding its ability to detect complex structures within data sets; however, they cautioned about
its computational intensity and the need for a proper understanding of eigenvalues. Additionally,
Garecia et al. (2023) introduced an optical clustering approach that merges spatial and spectral
information, proving effective in identifying crime hotspots but requiring substantial
computational resources.

Lastly, studies like Lopez et al. (2024) leveraged DBSCAN in conjunction with other
machine learning techniques to improve crime prediction accuracy, successfully demonstrating
its applicability to real-world datasets despite the necessity for careful parameter selection to
avoid misclassification.

3.METHODOLOGY

The methodological framework for this research introduces a novel clustering model
named 3PGridCluster, designed to analyse crime patterns through a grid-based spatial clustering
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approach. This methodology aims to efficiently partition crime occurrences across
different levels of grid granularity, each representing varying degrees of public and private
spaces. The following subsections elaborate on each phase of the methodology.

3.1 Dataset information

In the initial stage, the research utilises a comprehensive Indian Crime Dataset as its
foundational data source. The dataset comprises geospatial and temporal records of reported
crimes over an extended period, ensuring the inclusion of diverse criminal activity from various
regions in India. This data serves as the core input for subsequent clustering stages, offering a

rich base for analysis and pattern discovery.

Table 1: Attribute Information for Indian Crime Dataset

Attribute . .
Name Description Data Type Example Values
Crime ID Unique identifier for each crime Integer 101, 102, 103
- record.
] Type of crime committed (e.g., ) Theft, Assault,
Crime_Type theft, assault). Categorical Robbery
. Date
Date ]r)eatjrtvzgen the crime was (YYYY-MM- 2024-01-15
ported. DD)
. Time when the crime occurred . ) )
Time (24-hour format). Time (HH) 14:30, 09:45
. Specific location des.crlp‘uon or Main Street,
Location address where the crime Text
Local Park
occurred.
Latitude Geographical latitude of the Float 28.7041, 19.0760
crime location.
Longitude Geographical longitude of the | 1, 77.1025, 72.8777
crime location.
. District where the crime . North District,
District Categorical o
occurred. South District
State where the crime was ) Mabharashtra,
State Categorical
reported. Karnataka
Victim Age Age of the victim involved in Integer 25.32. 45
the crime.
Victim_Gender Gender of the victim Categorical Male, Female
(e.g., male, female).
R ; TE
Suspect_Count Number 0 suspe.cts identified in Integer 1,20
relation to the crime.
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Attribute
D ipti Data T E le Val
Name escription ata Type xample Values
Indicates if an arrest was made
Arrested W Boolean Yes, No
(yes/no).

Firearm, Knife,
None

Type of weapon involved in the

crime (if any). Categorical

Weapon

) ) ) Theft, Revenge
] Identified motive behind the ’ ) g%
Motive ) . Text Domestic
crime (if known). .
Dispute

The above table shows the detailed explanation about the dataset attributes its type and
example values. This dataset has 15 attributes like crime_id, type, date, time, etc.

To ensure the robustness and consistency of the dataset, the Min-Max Normalisation
technique is employed during the preprocessing phase. This method standardises the range of
feature values by rescaling them to a defined range, typically between 0 and 1. By applying Min-
Max Normalisation, we minimise the effects of variability within the dataset, enhancing
comparability across regions and ensuring that extreme values do not disproportionately
influence the clustering process.

3.2 Feature Selection

Feature selection is conducted using a Lasso-type regularisation method, which is pivotal
in selecting the most significant features that contribute to crime clustering. This technique
penalises irrelevant or less important variables, reducing the dimensionality of the dataset while
preserving the most meaningful attributes. By refining the input features, this method ensures
that the clustering model is both efficient and focused on the most pertinent crime indicators.

. L1 Regularization (Lasso): This method can be used to shrink irrelevant feature
coefficients to zero, retaining only the most important ones for crime prediction and clustering.

3.3 Architecture of 3PGrid Cluster Model(3PGC)
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Figure 1:Architecture of 3PGrid Cluster Model

Above mentioned is the 3PGrid cluster model for identifying the crime occurrences using
the Indian crime dataset. This shows the series of operations form data collection to end result
that is recommendations. There are lot of functionalities to be performed in-between these two
steps.

3.4 Algorithm for 3PGrid Cluster Model

Input: Indian crime dataset
Output: Identified clusters of crime occurrences

Step 1: Data Collection
1.1 Collect the Indian crime dataset containing spatial coordinates (latitude, longitude) and
timestamps of reported crimes.

Step 2: Preprocessing
2.1 Apply normalization technique to scale the dataset to a uniform range, enhancing the
quality of subsequent analyses.

o Example technique: Min-Max Normalization or Z-Score Normalization.

Step 3: Feature Selection

3.1 Utilize Lasso regression for feature selection to identify significant predictors influencing
crime occurrences.

3.2 Select features with non-zero coefficients, which will be used in clustering.
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Step 4: 3PGrid Cluster Model

4.1 Set the partition range as grid boundaries NxN, where NxN is a prime number.

4.2 Fix N values based on predetermined criteria to ensure adequate representation of crime
data in grid formation.

Step 4.3: Public Cluster Formation (5 km x 5 km Grid)

4.3.1 Mark crime occurrences within each grid cell.

4.3.2 For each crime occurrence, perform a similarity check based on selected features and type
of crime:

e If crimes are similar, group them into the same cluster.
e If crimes are dissimilar, classify them as outliers.

Step 4.4: Private Cluster Formation (3 km x 3 km Grid)
4.4.1 Reduce the grid range to 3 km x 3 km, maintaining N as a prime number.
4.4.2 Repeat Steps 4.3.1 to 4.3.3 to form new clusters within this grid size.

Step 4.5: Protected Cluster Formation (1 km x 1 km Grid)
4.5.1 Further reduce the grid range to 1 km x 1 km, ensuring NNN remains a prime number.
4.5.2 Repeat Steps 4.3.1 to 4.3.3 to identify clusters at this more granular level.

End Algorithm.
3.4.1 Grid Partitioning

The initial step involves setting a partition range, where the spatial region of interest is
divided into N x N grid boundaries. Here, the grid size is determined by selecting a prime number
for N, to avoid symmetrical patterns that may influence clustering outcomes. The initial grid size,
defined as Skm x 5km, represents what is termed the Public Cluster.

3.4.2 Crime Marking and Similarity Check

Within each Public Cluster grid, crime occurrences are marked based on their geospatial
coordinates. A similarity check is conducted for every recorded crime, comparing it against others
in terms of crime type and other relevant attributes. Crimes of a similar nature are grouped into
clusters, while those that diverge in type or characteristics are flagged as outliers. This approach
enables a meaningful segmentation of crimes, wherein clusters reflect homogeneity in criminal
activity within public spaces.

3.4.3 Grid Refinement to Private Cluster

Upon forming the Public Clusters, the grid size is reduced by adjusting the prime number
N to a smaller value, creating a finer grid of 3km x 3km, referred to as the Private Cluster. The
same crime marking and similarity checking process is repeated within these smaller grids,
further refining the spatial granularity of the clustering. This step captures criminal patterns in
semi-public spaces, where population density and criminal activity are likely to differ from more
expansive public areas.

3.4.4 Grid Refinement to Protected Cluster
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In the final stage, the grid size is further reduced to 1km x 1km, constituting the Protected
Cluster. This finest grid size targets private spaces, such as residential or highly restricted areas.
Once again, the methodology repeats the crime marking and clustering procedure, now at the
most granular level. The Protected Cluster highlights crime occurrences in highly localised, often
personal, spaces where security and privacy concerns are paramount.

3.4.5 Outlier Detection

At each stage of the grid reduction process, any crime that does not align with the
predominant type in its cluster is classified as an outlier. These outliers may represent unique
criminal incidents or deviations from standard patterns and are treated separately for further
analysis. The identification of outliers is integral to understanding atypical crime occurrences,
which may provide valuable insights into emerging or isolated criminal behaviours.

3.5 Mathematical Design for 3PGrid Cluster Model:
Grid Partition n X n : set inner Boundaries , Covariance Matrix ,

Grid Partitioning:
GP(R):{glJla_]: 1 )2’ .. p}

where p€{5,3,1}p€{5,3,1}, represents the prime numbers used for the grids. Each grid cell gij
corresponds to a subregion of size pxp km

Crime Similarity Assessment:
For each grid cell gij, the similarity between crimes ci and cj is calculated as:
S(ci,cj)=a.dist(xiXj+p .type(ci,cj)

where dist(xi,xj) is the spatial distance between crimes, type(ci,cj) is the similarity in
crime types, and « and g are weighting factors

Clustering Based on Similarity:

A crime cluster Ck within a grid cell is formed by grouping crimes and cj that satisfy
the condition:

S(ci,cy)<t

where 7 is the similarity threshold.
Outlier Detection:

Crimes that do not satisfy the similarity condition are marked as outliers:

O(ci)y={cilS(ci,cj)>t,VcjeC}

Recursive Grid Refinement:

The recursive reduction of the grid size follows:

Gpk(R)SGpk—1(R)
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Where pk and pk—1 represent successive prime numbers (e.g., 3, 5). At each level, the
grid size reduces, and steps 2—4 are repeated for finer clustering.

Unified Equation for the 3PGridCluster Model:

The overall clustering process, combining grid partitioning, crime similarity, clustering,
and outlier detection, can be represented as:

C, = {Cil.S(Ci, C]) < T},V Ci:Cj € Yij >

C(R)=pE€ {5’3'1}<0(Ci) ={ci|S(cic;)) >T, v € gy}

This equation represents the final clustering result C(R), which is the union of all

clusters Ck and outliers O(ci) over all grid partitions Gp(R) for €{5,3,1}p€e{5,3,1}.

3.6 Key Parameters Using for 3PGrid Cluster
Table 2: key parameters for proposed 3PGridCluster model

Parameter Name Symb_ol/ Description
Notation
Region of Study R The geographical area under analysis for crime
occurrences.
Grid Size (Prime P Prime number representing the size of each grid
Number) cell, chosen to progressively reduce grid scale.
The individual subregion (grid cell) created from
Grid Cell Gij partitioning the region RRR using a grid of size
PpP.
Crime Data Point Ci Represe_nts a crime occurrence with spatial and
categorical information.
A measure of similarity between two crimes
Crime Similarity S(ci,cj) cic_ici and cjc_jcj, based on distance and crime
type.
Distance Between NP Geographical distance between crime occurrences
: dist(xi,xj)\ L o
Crimes cic_ici and cjc_jcj.
Crime Type . Categorical similarity between the types of crimes
L type(ci,cj) A L
Similarity cic_ici and cjc_jcj.
Weight for A Weighting factor for the spatial distance between
Distance crimes in the similarity calculation.
Weight for Crime B Weighting factor for the crime-type similarity in
Type the similarity calculation.
Similarity 2 The maximum allowable similarity score for
Threshold crimes to be considered part of the same cluster.
— — » :
Public Cluster Size G5(R) Inltla_l grid size of 5 km * 5 km used to define the
Public Cluster.
Private Cluster G3(R) Refined grid size of 3 km * 3 km used to define
Size the Private Cluster.

33




Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-374
Parameter Name Symb_ol/ Description
Notation

Protected Cluster Gi(R) Final grid size of 1 km * 1 km used to define the
Size Protected Cluster.

A group of crimes within the same grid cell that
Cluster Group Ck are similar based on the threshold t\taur.
Outliers 0(ci) Crime occurrences that do not meet the similarity

threshold t\taut and are marked as outliers.
Grid Reduction Gpk(R)SGp | Recursive grid size reduction with prime numbers,
Formula k—1(R) reducing the spatial partition scale.

The above are the various parameters associated with the 3PGC cluster model. There are 16
parameters associated with this.

4.PERFORMANCE EVALUATION
1. Silhouette Coefficient (SC)

The Silhouette Coefficient measures how similar an object is to its own cluster compared to other
clusters. It is defined for each point and ranges from -1 to +1, where a higher value indicates a
better clustering.

b(D) — a(i)
max ((a(i), b(i))

a(i) - Average distance from the point i to all other points in the same cluster.

SC() =

b(i) — Minimum Average distance from the point i to all other points in the any other cluster.

2. Dunn Index (DI)

The Dunn Index evaluates clustering by measuring the ratio of the minimum inter-cluster
distance to the maximum intra-cluster distance. A higher Dunn Index indicates better clustering.

miniij diSt(Ci, C])
max,diameter(Cy)

C;, Cj — different clusters.

dist(C;, C;) — distance between Cj, C;

diameter (C))- maximum distance between any two points in cluster Cj,
3. Calinski-Harabasz Index (CHI)

The Calinski-Harabasz Index, also known as the variance ratio criterion, is used to evaluate the
quality of clustering. Higher values indicate better clustering.

_ B _ tr(Mp)

CHI = W)  tr(My)
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B(k) - Between cluster dispersion.

W (k) — Withing cluster dispersion.

tr(Mp) - Trace of the between cluster scatter matrix.
tr(My,) — Trace of the within-cluster scatter matrix.
k - Number of clusters

4. Davies-Bouldin Index (DBI)

The Davies-Bouldin Index assesses clustering quality by measuring the average similarity ratio
between clusters. Lower values indicate better clustering.

DBI = zm‘” _0ito
k S \dist(Cy, C))

k — Number of clusters

— Average distance of points in cluster o; to the centroid of g;.
dist(Cl-, Cj) — Distance between the centroids of clusters C; and C;.
5. Purity (P)

Purity measures the extent to which clusters contain a single class. It ranges from 0 to 1, with
higher values indicating better performance.

k
1 max
i=1

N — Total Number of points

C; — Cluster i

L; — Class |

6. Adjusted Rand Index (ARI)

The Adjusted Rand Index measures the similarity between two clusterings, adjusted for chance.
It ranges from -1 to 1, with higher values indicating better agreement.

(nx2:(5) + (5)) - (%) 2,(5)

ARI = 1
5[n(n —1)]

n - Total number of samples.
- Number of pairs of points in the same cluster.

b; — Number of pairs of pints in different clusters.
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7. Clustering Accuracy (CA)

Clustering Accuracy indicates the percentage of correctly classified instances in the clustering
model.

_ TP+ TN

" TP+TN+FP+FN

CA

TP — True positives (Correctly identified instances)

TN — True negatives (Correctly identified non — instances)
FP — False positives (Incorrectly identified instances)

FN — False negatives (missed instances)

S.Result and Discussion

5.1. Cluster Density Analysis

This table showcases the average density and total clusters identified at each grid level. Higher
densities in smaller grids indicate that 3PGridCluster can capture fine-grained details as grid
sizes decrease.

Table 3: Density analysis of each cluster

Cluster Level ||Grid Size (km) | Total Clusters é::;ligsep]e):ﬁ:% Inc]:::ssit{% )
[Public | s5x5 | 150 | 15 H -
[Private | 3x3 | 220 | 40 | 166% |
Protected || 1x1 || 350 | 80 | 100% |

The average density of crimes in each of the cluster level is shown in the above table. It is evident
that the crime rate increases in protected cluster than others.

5.2. Result for Parameter Variation of Cluster Density Analysis in 3PGrid Cluster

Table 4: Parameters comparison of each cluster

Parameter Variation Public Cluster (5 | Private Cluster || Protected Cluster
km x 5 km) (3 km x 3 km) (1 km x 1 km)
| Grid Size (km?) H 25 H 9 H 1 |
| Number of Crime Incidents || 240 [ 300 [ 360 |
Cluster Density
: 2
(Incidents/Cluster) 20 12 7

’ Average Cluster Size

20 incidents

H

12 incidents

|

7.2 incidents ‘

‘ Minimum Cluster Size

15 incidents

5 incidents

2 incidents ‘

Maximum Cluster Size

30 incidents

20 incidents

15 incidents
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Parameter Variation Public Cluster (5 | Private Cluster || Protected Cluster
km x 5 km) (3 km x 3 km) (1 km x 1 km)
‘ Outliers Detected H 15 H 10 H 5 ‘
| Spatial Coverage (%) | 75% H 80% H 85% |
é}/jsr;%e(lli)nlls)tance to Nearest 39 20 10
| Temporal Range (Days) | 30 [ 30 [ 30 |
| Dissimilarity Threshold || 0.5 (high) || 0.3 (medium) | 0.1 (low) |
‘ Number of Crime Types H 5 H 6 H 7 ‘

The three types of cluster are compared in different factors in the above table. The highest number
of crimes and lowest outliers are recorded in protected cluster. This shows protected cluster is
the most vulnerable one.

5.3. Outlier Detection Rate

Outlier detection rates could help showcase how 3PGridCluster effectively isolates
dissimilar crime occurrences as outliers, especially as grid sizes decrease.

Table 5: Outlier comparison in each cluster

- . Outlier
Cluster Level G?li:)l ze C{?:I?ls ]());telé::(sl Detection
Rate (%)
| Public | 5xs | 2000 || 100 | 5% |
| Private | 3x3 || 1800 || 150 || 83% |
|Protected | 1x1 | 1600 | 220 | 13.75% |

The outliers detected and the percentage of outliers in each cluster is shown in the above table.
The outlier detection rate is high in the protected cluster.

5.4. Clustering Similarity Analysis

This analysis could show the similarity scores used for clustering at each level. Higher similarity
thresholds in the smaller grids indicate refined clustering where only highly similar crime types
are grouped together.

Table 6: Similarity score in each cluster level

Cluster ||Grid Size Similarity Average Similarity | Clusters with High
Level (km) | Threshold (t\taur) Score (%) Similarity (%)
Public | 5x5 | Moderate | 65 H 60 |
Private | 3x3 | High [ 75 [ 75 |
‘Protected H Ix1 H Very High H 85 H 90 ‘

The above table is the similarity comparison of three different levels of clusters.

5.5. Performance Comparison with Existing Methods
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This table compares 3PGridCluster with existing clustering methods, illustrating improvements
in accuracy, computation time, and precision in outlier detection.

Table 7: 3PGC Model evaluation

‘ Metric H Existing Grid Partition HSPGridCluster ‘
‘Accuracy (%) H 78 H 90 ‘
‘Computation Time (s) H 120 H 90 ‘
‘Outlier Detection Precision (%)H 70 H 85 ‘
‘Clustering Similarity (%) H 72 H 88 ‘

The above table compares existing grid partition and 3PGC in four factors.

5.5. Crime Type Distribution Across Clusters

Showcasing how crime types are distributed across cluster levels could be helpful, illustrating
3PGridCluster’s effectiveness in creating meaningful clusters for specific crime types.

Table 8: Crime distribution

Cluster Crime Tvpe Total Percentage of
Level yp Incidents Cluster (%)
Theft 500 40
Public
Assault 300 24
Theft 150 30
Private
Assault 220 44
Theft 60 12
Protected
Assault 150 30

The distribution of crime among the three clusters are shown in the above table, private cluster
level assault has the highest rate of occurrence.

5.6 Performance Evaluation with Existing Model

Table 9: Performance evaluation of Models

. Calinski- | Davies- Adjusted .
. Silhouette | Dunn . . Clustering
Algorithm . Harabasz | Bouldin| Purity | Rand
Coefficient | Index Accuracy
Index Index Index
K-Means 0.65 1.35 0.76 0.56 0.68 0.77 0.83
DBSCAN 0.60 1.54 0.68 0.51 0.57 0.65 0.81
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Gaussian
Mixture 0.68 1.22 0.82 0.68 0.75 0.84 0.87
Model
HDBSCAN 0.63 1.41 0.73 0.53 0.63 0.72 0.83
Spectral 0.67 1.26 0.80 064 | 0.72 0.82 0.86
Clustering
OPTICS 0.68 1.24 0.82 0.65 0.73 0.82 0.88
OptiGrid 0.79 1.15 0.84 0.84 0.80 0.87 0.89
WaveCluster 0.74 1.39 0.82 0.81 0.82 0.79 0.87
3PGC 0.88 1.05 0.93 091 0.95 0.92 0.95

Above table compares different existing models and the 3PGC with various factors. It shows
3PGC givers better results.

Models Performance Evaluation

154
141
5 139
' 126 14
L5
105
590959995
088 89 08
L 081 m  0sdd 0483 0 083% 82 0 o5 48 52308
08 e @ acs ost” 50T 07 06 73 : 07 :
0.6 - 056 : : 0.63 06 06 0.6 0.65
05 06 057 5
| I I 051| | I Ml | |
0 I

K-Means DBSCAN Gaussian Mixture Model HDBSCAN Spectral Clustering OPTICS OptiGrid ‘WaveCluster 3PGC

=
o

=
=

=
=}

u Silhouette Coefficient ~ mDunn Index Calinski-Harabasz Index Davies-Bouldin Index ~ mPurity ~mAdjusted RandIndex  mClustering Accuracy

Fig. 2: Model performance evaluation

The above is the various factor analysis like silhouette coefficient, dunn index, etc. for the
different models. This shows that the 3PGC gives better results.

5.7 Performance Evaluation with different data set

Table 10: Dataset Comparison Performance

Alsorithm UrbanCrime |Rural Crime |[Mixed Crime Historical
8 Dataset Dataset Dataset Crime Dataset

K-Means | 683% | 652% || 715% || 701% |
IDBSCAN | 711% | 667% | 7134% | 723% |
Agglomerative 65.8% 63.5% 70.2% 68.7%
Hierarchical
Spectral Clustering | 73.5% | 694% | 751% | 748% |
Gaussian Mixture Mode o o o o
(GMM) 70.6% 66.8% 72.3% 71.9%
3PGridCluster o o o o
(Proposed Model) 81.4% 78.2% 83.6% 82.1%
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The above is the accuracy comparison of different models on the different datasets. It is
evident that the proposed model outperforms in all the four datasets.

The 3PGridCluster model shows the highest performance across all datasets,
particularly excelling in both urban and mixed crime datasets, where its ability to handle high-
density and diverse crime patterns proves advantageous. The dynamic grid system and recursive
refinement enable the model to adapt to varying spatial densities in different environments,
making it robust across diverse datasets.

Datasets Comparison
90.00%
s B0
78.20%
80.00%
, 75.10%74.80%
o 73.40%77 300, 73.30%
W 1004 % 3 0 2Whgg 70 040 g UL
70.00% 43 66 0% 7 66.80%
o 55 20% o 65'50%63)0/
60.00%
50.00%
40.00%
30.00%
20.:00%
10.00%
0.00%
K-Means DBSCAN Agglomerative Hierarchical Speciral Clustenng Gausstan Mixture Models (GMM) 3PGrudCluster (Proposed Model)

B UrbanCrime Dataset W Rural Crime Dataset ~ mMixed Crime Dataset  m Historical Crime Dataset

Fig. 3: Comparison on different datasets

The above diagram shows different dataset comparison on different models like k-means,
DBSCAN, etc. It shows that the proposed model provides highest performance.

5.CONCLUSION

In conclusion, this chapter has highlighted the development and application of the 3PGrid
Based Cluster methodology for analysing crime patterns in India. This innovative framework
utilises a multi-tiered grid system, categorising crime data into Public, Private, and Protected
clusters, enhancing the granularity of crime analysis. The findings demonstrate that grid-based
clustering significantly improves the identification of crime hotspots and their spatial
distribution, effectively addressing limitations of traditional approaches. By employing a robust
feature selection technique, specifically the Lasso method, the model's predictive capabilities are
enhanced, allowing for the identification of outliers and incorporating temporal variations. This
adaptability suggests that the 3PGrid methodology has broader applicability beyond criminology,
extending to urban planning and public safety initiatives. Future research could refine clustering
parameters and integrate temporal data to further elucidate crime trends, facilitating more
informed policy-making. Overall, the 3PGrid Based Cluster methodology represents a significant
advancement in spatial analysis of crime dynamics.
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6.FUTURE ENHANCEMENT :

In pursuing further advancements in the 3PGrid Based Cluster methodology, future research may
explore the integration of advanced machine learning techniques and artificial intelligence
algorithms to enhance the accuracy and efficiency of crime prediction models. The incorporation
of dynamic data sources, such as social media sentiment analysis and real-time surveillance
inputs, could provide a more holistic view of crime trends, enabling more responsive policing
strategies. Additionally, expanding the grid framework to incorporate socio-economic variables
and demographic data may offer deeper insights into the underlying factors influencing crime
patterns, thereby fostering a more nuanced understanding of criminal behaviour. Furthermore,
refining the temporal component by employing time-series analysis could allow for the detection
of seasonal fluctuations and long-term trends in crime occurrences, ultimately facilitating the
development of proactive measures aimed at crime prevention. By embracing these
enhancements, the 3PGrid methodology can evolve into a more versatile and powerful tool for
law enforcement agencies and urban planners alike, contributing to the development of safer
communities.
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